
VARIATIONAL METHODS OF SOLUTION OF 
PLASTICITY PRORLEMS 

(0 VARIATSIONNYKH METODAKH RESHENIIA ZADACH 

TEORII PLASTICHNOSTI) 

PMM Vo1.23, No.3. 1959, pp. 616-617 

L. M. KACHANOV 

(Leningrad) 

(Received f March 1959) 

1. Variational methods, based on the principle of minimum potential energy 

of a system and on the principle of Castinliano, have been applied ex- 

tensively to the solution of problems in the theory of elasticity. In the 

theory of plasticity there are also analogous minimum principles; here, 

however, the functionals are not quadratic; therefore, the application of 

variational methods meets with great difficulties. Below a method is in- 

dicated which enables a successful application of variational methods to 

the solution of problems in theory of both plasticity and steady state 

creep. A similar method can also be used in finding the minimum in other 

non1 inear problems. 

Let the body obey the equations of the theory of elastoplastic deform- 

at ions 

D,-fg?(7’)D,, E = 3ha (‘1 

where D(, Do are deformation and strain deviations, t the relative change 

of volume, o the mean pressure, k the bulk modulus. Shear stress intens- 

ity T is connected with shear strain intensity by the relation 

T=gl(F)r. or 1’ ==m g, (T) 7' (2) 
where 

0 <g, (r)Gco, crl’ (U < 0, g2 (T) z & I g,’ (T) > 0 (3) 

and Go is the shear modulus. The function g(l’) is equal to the tangent 

of the angle of slope of the secant OM (Fig. 1). and g,(T) is the co- 

tangent of the same angle. 

Let us assume, for the sake of simplicity, that spatial forces are 

absent. Let the load Fn be given over a portion of the surface SF. and 

the displacement u - over the remaining portion Sa. 
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2. It is known [ I] that the true displacement u = U(X, y, Z) corres- 

ponds to the minimum potential energy of the system 

where V is the volume of the body (when g,(r) = const = CO, we have the 
case of an elastic body). The direct calculation of its minimum by the 
Ritz method is difficult. Under homogeneous conditions over S,,, one can 
easily obtain a rough approximation in the form u = cu , where c is an 

arbitrary parameter, and u is a suitable displacement iu is usually 

taken as the solution of the corresponding elastic problGm*). 

Let us look for the solution u of the problem (4) by quccessive approxi- 
mations in the form 

Uk = ug* + r, ‘ks ‘8’ (h = 0. 1, 2. . . .) (5) 
S=l 

where uO* satisfies the given conditions on Su, II~* becomes zero on S 

and cks are arbitrary constants. 
U 

In the initial (zero) approximation 

l The unreliability of this method can be judged in the case of bending 

of a cantilever beam by a force applied at the end z = 1. For a power 
law t Z = Buzl(r > 1) the ratio of deflection U. (1) under action of 
force, using the approximate solution in the 

exact value of deflection ~(1) is equal to 
fo:m mentioned, to the 

The cause of this discrepancy, increasing 
violation of equilibrium conditions. 

with m, is a considerable 
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(k = 0) we assume gl(r 1 = const = C,,; having obtained uc, we compute the 

corresponding ra. Using r0 we compute the secant modulus gl (r,) ; sub- 

stituting into (4), we look for the first approximation of u1 by minimiz- 

ing the quadratic functional : 

etc. The presence of the variable “modulus” gl(rk_l) in the k-th approxi- 
mation only slightly complicates the compulation of integrals; the k-th 

approximation has the same form as for the elastic body. 

3. True stresses oij(i, j = 1, 2, 3) produce the minimum complementary 

work of the body [ 11 

subject to the condition that 

Let us construct successive approximations in the form 

where u . 
0 1s a particular solution of the equilibrium equations, satisfy- 

ing givii conditions on S P’ 0.. 11 s 
are particular solutions of equilibrium 

equations, satisfying zero boundary conditions on SF and cks are arbitrary 

constants. Assuming g2 (77 = CO-’ we find the initial 
Cl. .@I, corresponding to the elastic problem, and compute 

G;‘= gl(T (Oh,, and determine the first approximation u.. 
ing the quadratic functional: 

etc. For the k-th approximation Gk = gl(T (k-1)/C k_1). Note that the com- 

putation of the variable nmodulus* Gk from the corres onding 

deformation rk_l rather than from the intensity T (k-17 
intensity of 

considerably im- 
proves convergence. 

4. Solutions of problems in the theory of elasticity by variational 

methods can easily be extended to corresponding problems of plasticity 

with strain hardening. In (51, (‘7) it is advisable to retain the number 

of terms which ensures the desired accuracy of the solution of the elastic 

problem. It is easier to carry out integrations numerically; the values 
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of the secant *modulus* Ck can be obtained starting directly from the 

experimental curve T- r. Preservation of the same form of solution in 

each approximation (only coefficients eks vary) considerably simplifies 

computations, and contrary to other methods of successive approximations 

(see [ 21 ), eliminates the cumbersomeness of results obtained. 

Elasto-plastic problems are solved using the same methods. Finally, 

note that the solution of the minimum problem in each phase of approxima- 
tion can be constructed by other means (e.g. L. V. Kantorovich’s method 

consisting of reduction the ordinary differential equations). 

I take this opportunity to express my gratitude to S.G. Mikhlin for 

discussing and taking an interest in this’ work. 
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